Adaptive Learning in Complex Reproducing Kernel Hilbert Spaces Employing Wirtinger's Subgradients
نویسندگان
چکیده
منابع مشابه
Bayesian Learning in Reproducing Kernel Hilbert Spaces
Support Vector Machines nd the hypothesis that corresponds to the centre of the largest hypersphere that can be placed inside version space, i.e. the space of all consistent hypotheses given a training set. The boundaries of version space touched by this hypersphere de ne the support vectors. An even more promising approach is to construct the hypothesis using the whole of version space. This i...
متن کاملReal reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
متن کاملAdaptive Estimation for Nonlinear Systems using Reproducing Kernel Hilbert Spaces
This paper extends a conventional, general framework for online adaptive estimation problems for systems governed by unknown nonlinear ordinary differential equations. The central feature of the theory introduced in this paper represents the unknown function as a member of a reproducing kernel Hilbert space (RKHS) and defines a distributed parameter system (DPS) that governs state estimates and...
متن کاملDistribution Embeddings in Reproducing Kernel Hilbert Spaces
The “kernel trick” is well established as a means of constructing nonlinear algorithms from linear ones, by transferring the linear algorithms to a high dimensional feature space: specifically, a reproducing kernel Hilbert space (RKHS). Recently, it has become clear that a potentially more far reaching use of kernels is as a linear way of dealing with higher order statistics, by embedding proba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2012
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2011.2179810